2 research outputs found

    Multi-spatiotemporal analysis of changes in mangrove forests in Palawan, Philippines: predicting future trends using a support vector machine algorithm and the Markov chain model

    Get PDF
    Multi-temporal remote sensing imagery can be used to explore how mangrove assemblages are changing over time and facilitate critical interventions for ecological sustainability and effective management. This study aims to explore the spatial dynamics of mangrove extents in Palawan, Philippines, specifically in Puerto Princesa City, Taytay and Aborlan, and facilitate future predictions for Palawan using the Markov Chain model. The multi-date Landsat imageries during the period 1988–2020 were used for this research. The support vector machine algorithm was sufficiently effective for mangrove feature extraction to generate satisfactory accuracy results (>70% kappa coefficient values; 91% average overall accuracies). In Palawan, a 5.2% (2693 ha) decrease was recorded during 1988–1998 and an 8.6% increase in 2013–2020 to 4371 ha. In Puerto Princesa City, a 95.9% (2758 ha) increase was observed during 1988–1998 and 2.0% (136 ha) decrease during 2013–2020. The mangroves in Taytay and Aborlan both gained an additional 2138 ha (55.3%) and 228 ha (16.8%) during 1988–1998 but also decreased from 2013 to 2020 by 3.4% (247 ha) and 0.2% (3 ha), respectively. However, projected results suggest that the mangrove areas in Palawan will likely increase in 2030 (to 64,946 ha) and 2050 (to 66,972 ha). This study demonstrated the capability of the Markov chain model in the context of ecological sustainability involving policy intervention. However, as this research did not capture the environmental factors that may have influenced the changes in mangrove patterns, it is suggested adding cellular automata in future Markovian mangrove modelling

    Climate change awareness and risk perceptions in the coastal marine ecosystem of Palawan, Philippines

    Get PDF
    Understanding coastal communities’ awareness and risk perceptions of climate change impact is essential in developing effective risk communication tools and mitigation strategies to reduce the vulnerability of these communities. In this study, we examined coastal communities’ climate change awareness and risk perceptions of climate change impact on the coastal marine ecosystem, sea level rise impact on the mangrove ecosystem and as a factor affecting coral reefs and seagrass beds. The data were gathered by conducting face-to-face surveys with 291 respondents from the coastal areas of Taytay, Aborlan and Puerto Princesa in Palawan, Philippines. Results showed that most participants (82%) perceived that climate change is happening and a large majority (75%) perceived it as a risk to the coastal marine ecosystem. Local temperature rise and excessive rainfall were found to be significant predictors of climate change awareness. Sea level rise was perceived by most participants (60%) to cause coastal erosion and to affect the mangrove ecosystem. On coral reefs and seagrass ecosystems, anthropogenic drivers and climate change were perceived to have a high impact, while marine livelihoods had a low impact. In addition, we found that climate change risk perceptions were influenced by direct experiences of extreme weather events (i.e., temperature rise and excessive rainfall) and climate-related livelihood damages (i.e., declining income). Climate change risk perceptions were also found to vary with household income, education, age group and geographical location. The results suggest that addressing poverty and effectively communicating climate change risks can improve climate change awareness and risk perceptions
    corecore